Aerobic exercise affects mitochondrial quality control
Subject Areas : Sport Physiology
Faranak Amini
1
,
Mohammad Ali Azarbayjani
2
*
,
Shahin Riyahi Malayeri
3
,
Lida Moradi
4
1 - Department of Physical Education and Sport Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Sports Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
4 - Department of Physical Education and Sport Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Mitochondrial unfolded protein response, mitochondrial dynamics (fission and fusion), mitophagy, aerobic exercise,
Abstract :
Mitochondria play a significant role in morphological and physiological aspects of cells according to their known biological role. Any disruption in mitochondrial function weakens cell function and causes many cell diseases. On the other hand, mitochondria health is associated with cellular efficiency and causes health and physical performance. Evidence shows that one of the molecular mechanisms that regular physical activities, especially aerobic exercises, lead to health is mitochondrial health. Aerobic exercise can regulate and control the mitochondrial unfolded protein response (UPRmt), mitochondrial dynamics (fission and fusion) and mitochondrial. It seems that regulation of mRNA expression of proteins responsible for MQC signaling pathways, reduction of inflammation and oxidative stress is one of the mechanisms by which aerobic exercise benefits mitochondria.
1. Almutairi AH, Almutairi NS, Mousa N, Elsayed A, El-Sehrawy A, Elmetwalli A. Aerobic exercise as a non-pharmacological intervention for improving metabolic and hemodynamic profiles in type 2 diabetes. Ir J Med Sci. 2024 Dec;193(6):2781-2790. doi: 10.1007/s11845-024-03783-6. Epub 2024 Aug 19. PMID: 39158674.
2. Riyahi Malayeri, S., Mirakhorli, M. The Effect of 8 Weeks of Moderate Intensity Interval Training on Omentin Levels and Insulin Resistance Index in Obese Adolescent Girls. Sport Physiology & Management Investigations, 2018; 10(2): 59-68.
3. Choi JW, Jo SW, Kim DE, Paik IY, Balakrishnan R. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 2024 May;71:103101.
4. Farazandeh Nia, D., Hosseini, M., Riyahi Malayeri, S., Daneshjoo, A. Effect of Eight Weeks of Swimming Training with Garlic Intake on Serum Levels of IL-10 and TNF-α in Obese Male Rats. Jundishapur Scientific Medical Journal, 2018; 16(6): 665-671. doi: 10.22118/jsmj.2018.57830.
5. Bao F, Zhao X, You J, Liu Y, Xu Z, Wu Y, Wu Y, Xu Z, Yu L, Li J, Wei Y. Aerobic exercise alleviates skeletal muscle aging in male rats by inhibiting apoptosis via regulation of the Trx system. Exp Gerontol. 2024 Sep;194:112523. doi: 10.1016/j.exger.2024.112523. Epub 2024 Jul 18. Erratum in: Exp Gerontol. 2024 Oct 1;195:112541. doi: 10.1016/j.exger.2024.112541. PMID: 39025384.
6. Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother. 2024 Aug;177:117122. doi: 10.1016/j.biopha.2024.117122. Epub 2024 Jul 10. PMID: 38991302.
7. Zhang F, Lin JJ, Tian HN, Wang J. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy. Exp Physiol. 2024 Feb;109(2):190-201. doi: 10.1113/EP091309. Epub 2023 Oct 16. PMID: 37845840; PMCID: PMC10988701.
8. Javadov S, Kozlov AV, Camara AKS. Mitochondria in Health and Diseases. Cells. 2020 May 9;9(5):1177. doi: 10.3390/cells9051177. PMID: 32397376; PMCID: PMC7290976.
9. Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG, Brand MD. The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta. 2015 Feb;1847(2):171-181. doi: 10.1016/j.bbabio.2014.10.005. Epub 2014 Oct 27. PMID: 25449966.
10. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016 Sep;30:105-16. doi: 10.1016/j.mito.2016.07.003. Epub 2016 Jul 14. PMID: 27423788; PMCID: PMC5023480.. Epub 2015 Aug 20. PMID: 26298752.
11. Hosseini M, Ghasem Zadeh Khorasani N, Divkan B, Riyahi Malayeri S. Interactive Effect of High Intensity Interval Training with Vitamin E Consumption on the Serum Levels of Hsp70 and SOD in Male Wistar Rats. Iranian J Nutr Sci Food Technol 2019; 13 (4) :21-28
URL: http://nsft.sbmu.ac.ir/article-1-2689-en.html
12. Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: What is new and what challenges remain? Science. 2015 Sep 25;349(6255):1494-9. doi: 10.1126/science.aac7516. Epub 2015 Sep 24. PMID: 26404827.
13. Tanaka T, Nishimura A, Nishiyama K, Goto T, Numaga-Tomita T, Nishida M. Mitochondrial dynamics in exercise physiology. Pflugers Arch. 2020 Feb;472(2):137-153. doi: 10.1007/s00424-019-02258-3. Epub 2019 Feb 1. PMID: 30707289.
14. Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control. Front Physiol. 2020 Nov 2;11:583478. doi: 10.3389/fphys.2020.583478. PMID: 33224037; PMCID: PMC7667253.
15. Gao F, Zhang J. Mitochondrial quality control and neurodegenerative diseases. Neuronal Signal. 2018 Dec 3;2(4):NS20180062. doi: 10.1042/NS20180062. PMID: 32714594; PMCID: PMC7373240.
16. Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci. 2021 Nov 12;15:746873. doi: 10.3389/fnins.2021.746873. PMID: 34867159; PMCID: PMC8633545.
17. Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol. 2022 Jul 21;15(1):98. doi: 10.1186/s13045-022-01317-0. PMID: 35864539; PMCID: PMC9306209.
18. Kenny TC, Craig AJ, Villanueva A, Germain D. Mitohormesis Primes Tumor Invasion and Metastasis. Cell Rep. 2019 May 21;27(8):2292-2303.e6. doi: 10.1016/j.celrep.2019.04.095. PMID: 31116976; PMCID: PMC6579120.
19. Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, Mattson R, Hurren R, Babovic S, Maclean N, Restall I, Wang X, Jeyaraju DV, Sukhai MA, Prabha S, Bashir S, Ramakrishnan A, Leung E, Qia YH, Zhang N, Combes KR, Ketela T, Lin F, Houry WA, Aman A, Al-Awar R, Zheng W, Wienholds E, Xu CJ, Dick J, Wang JC, Moffat J, Minden MD, Eaves CJ, Bader GD, Hao Z, Kornblau SM, Raught B, Schimmer AD. Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell. 2015 Jun 8;27(6):864-76. doi: 10.1016/j.ccell.2015.05.004. PMID: 26058080; PMCID: PMC4461837.
20. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu Rev Physiol. 2019 Feb 10;81:19-41. doi: 10.1146/annurev-physiol-020518-114310. Epub 2018 Sep 14. PMID: 30216742.
21. Wang Z, Bo H, Song Y, Li C, Zhang Y. Mitochondrial ROS Produced by Skeletal Muscle Mitochondria Promote the Decisive Signal for UPRmt Activation. Biomed Res Int. 2022 Feb 21;2022:7436577. doi: 10.1155/2022/7436577. Retraction in: Biomed Res Int. 2023 Dec 29;2023:9898164. doi: 10.1155/2023/9898164. PMID: 35237690; PMCID: PMC8885241.
22. Cordeiro AV, Brícola RS, Braga RR, Lenhare L, Silva VRR, Anaruma CP, Katashima CK, Crisol BM, Simabuco FM, Silva ASR, Cintra DE, Moura LP, Pauli JR, Ropelle ER. Aerobic Exercise Training Induces the Mitonuclear Imbalance and UPRmt in the Skeletal Muscle of Aged Mice. J Gerontol A Biol Sci Med Sci. 2020 Nov 13;75(12):2258-2261. doi: 10.1093/gerona/glaa059. PMID: 32173728.
23. Cordeiro AV, Peruca GF, Braga RR, Brícola RS, Lenhare L, Silva VRR, Anaruma CP, Katashima CK, Crisol BM, Barbosa LT, Simabuco FM, da Silva ASR, Cintra DE, de Moura LP, Pauli JR, Ropelle ER. High-intensity exercise training induces mitonuclear imbalance and activates the mitochondrial unfolded protein response in the skeletal muscle of aged mice. Geroscience. 2021 Jun;43(3):1513-1518. doi: 10.1007/s11357-020-00246-5. Epub 2020 Jul 31. PMID: 32737758; PMCID: PMC8190321.
24. Apablaza P, Bórquez JC, Mendoza R, Silva M, Tapia G, Espinosa A, Troncoso R, Videla LA, Juretić N, Del Campo A. Exercise Induces an Augmented Skeletal Muscle Mitochondrial Unfolded Protein Response in a Mouse Model of Obesity Produced by a High-Fat Diet. Int J Mol Sci. 2023 Mar 16;24(6):5654. doi: 10.3390/ijms24065654. PMID: 36982728; PMCID: PMC10051316.
25. Slavin MB, Kumari R, Hood DA. ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab. 2022 Dec;66:101623. doi: 10.1016/j.molmet.2022.101623. Epub 2022 Nov 1. PMID: 36332794; PMCID: PMC9661517.
26 . Braga RR, Crisol BM, Brícola RS, et al. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPRmt in the hypothalamus of mice. Scientific Reports. 2021 Feb;11(1):3813. DOI: 10.1038/s41598-021-82352-8. PMID: 33589652; PMCID: PMC7884690.
27. Li J, Xu Y, Liu T, Xu Y, Zhao X, Wei J. The Role of Exercise in Maintaining Mitochondrial Proteostasis in Parkinson's Disease. Int J Mol Sci. 2023 Apr 28;24(9):7994. doi: 10.3390/ijms24097994. PMID: 37175699; PMCID: PMC10179072.
28. Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther. 2023 Sep 6;8(1):333. doi: 10.1038/s41392-023-01547-9. PMID: 37669960; PMCID: PMC10480456.
29. Campos JC, Marchesi Bozi LH, Krum B, Grassmann Bechara LR, Ferreira ND, Arini GS, Albuquerque RP, Traa A, Ogawa T, van der Bliek AM, Beheshti A, Chouchani ET, Van Raamsdonk JM, Blackwell TK, Ferreira JCB. Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics. Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2204750120
30. Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017 Nov 1;391:42-53. doi: 10.1016/j.tox.2017.07.019. Epub 2017 Aug 5. PMID: 28789970; PMCID: PMC5681418.
31. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008 Jan 23;27(2):433-46. doi: 10.1038/sj.emboj.7601963. Epub 2008 Jan 17. PMID: 18200046; PMCID: PMC2234339.
32. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005 Jul 15;280(28):26185-92. doi: 10.1074/jbc.M503062200. Epub 2005 May 17. PMID: 15899901.
33. Suárez-Rivero JM, Villanueva-Paz M, de la Cruz-Ojeda P, de la Mata M, Cotán D, Oropesa-Ávila M, de Lavera I, Álvarez-Córdoba M, Luzón-Hidalgo R, Sánchez-Alcázar JA. Mitochondrial Dynamics in Mitochondrial Diseases. Diseases. 2016 Dec 23;5(1):1. doi: 10.3390/diseases5010001. PMID: 28933354; PMCID: PMC5456341.
34. Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett. 2021 Apr;595(8):1184-1204. doi: 10.1002/1873-3468.14077. Epub 2021 Apr 5. PMID: 33742459.
35. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855. PMID: 22936770; PMCID: PMC4762028.
36. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84. doi: 10.1038/nrm3013. PMID: 21102612.
37. Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol (1985). 2023 Oct 1;135(4):763-774. doi: 10.1152/japplphysiol.00405.2023. Epub 2023 Aug 24. PMID: 37616334; PMCID: PMC10642518.
38. Axelrod CL, Fealy CE, Mulya A, Kirwan JP. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (Oxf). 2019 Apr;225(4):e13216. doi: 10.1111/apha.13216. Epub 2018 Dec 1. PMID: 30408342; PMCID: PMC6416060.
39. Moore TM, Zhou Z, Cohn W, et al. The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Molecular Metabolism. 2019 Mar;21:51-67. DOI: 10.1016/j.molmet.2018.11.012. PMID: 30591411; PMCID: PMC6407367.
40. Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021 May 4;33(5):957-970.e6. doi: 10.1016/j.cmet.2021.02.017. Epub 2021 Mar 18. PMID: 33740420.
41. Heo JW, No MH, Park DH, Kang JH, Seo DY, Han J, Neufer PD, Kwak HB. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle. Korean J Physiol Pharmacol. 2017 Nov;21(6):567-577. doi: 10.4196/kjpp.2017.21.6.567. Epub 2017 Oct 30. PMID: 29200899; PMCID: PMC5709473.
42. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012 Jul;393(7):547-64. doi: 10.1515/hsz-2012-0119. PMID: 22944659; PMCID: PMC3630798.
43. Zachari M, Ktistakis NT. Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Front Cell Dev Biol. 2020 Mar 18;8:171. doi: 10.3389/fcell.2020.00171. PMID: 32258042; PMCID: PMC7093328.
44. Cummins N, Götz J. Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci. 2018 Apr;75(7):1151-1162. doi: 10.1007/s00018-017-2692-9. Epub 2017 Oct 30. PMID: 29085955; PMCID: PMC11105538.
45. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000 Aug;29(3-4):222-30. doi: 10.1016/s0891-5849(00)00317-8. PMID: 11035250.
46. Ashrafi, G., Schwarz, T. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20, 31–42 (2013). https://doi.org/10.1038/cdd.2012.81
47. Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab. 2023 Dec;5(12):2047-2061. doi: 10.1038/s42255-023-00930-8. Epub 2023 Nov 30. PMID: 38036770.
48. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007. PMID: 25611507; PMCID: PMC4764997.
49. Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020 Nov 9;8(1):189. doi: 10.1186/s40478-020-01062-w. PMID: 33168089; PMCID: PMC7654589.
50. Ge, P., Dawson, V.L. & Dawson, T.M. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegeneration 15, 20 (2020). https://doi.org/10.1186/s13024-020-00367-7
51. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012 Feb 15;125(Pt 4):795-9. doi: 10.1242/jcs.093849. PMID: 22448035; PMCID: PMC3656616.
52. Nijholt, K. T., Sánchez-Aguilera, P. I., Mahmoud, B., Gerding, A., Wolters, J. C., Wolters, A. H. G., Giepmans, B. N. G., Silljé, H. H. W., de Boer, R. A., Bakker, B. M., & Westenbrink, B. D. (2023). A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise. Scientific Reports, 13, Article 18822. https://doi.org/10.1038/s41598-023-45961-z
53. Chen YL, Ma YC, Tang J, Zhang D, Zhao Q, Liu JJ, Tang HS, Zhang JY, He GH, Zhong CH, Wu YT, Wen HR, Ma LQ, Zou CG. Physical exercise attenuates age-related muscle atrophy and exhibits anti-ageing effects via the adiponectin receptor 1 signalling. J Cachexia Sarcopenia Muscle. 2023 Aug;14(4):1789-1801.
54. No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch. 2020 Feb;472(2):179-193. doi: 10.1007/s00424-020-02357-6. Epub 2020 Feb 11. PMID: 32048000.
55. Ma C, Zhao Y, Ding X, Gao B. The role of Sirt3 in the changes of skeletal muscle mitophagy induced by hypoxic training. Gen Physiol Biophys. 2022 Sep;41(5):447-455. doi: 10.4149/gpb_2022023. PMID: 36222342.
56. Yamauchi N, Tamai K, Kimura I, Naito A, Tokuda N, Ashida Y, Motohashi N, Aoki Y, Yamada T. High-intensity interval training in the form of isometric contraction improves fatigue resistance in dystrophin-deficient muscle. J Physiol. 2023 Jul;601(14):2917-2933. doi: 10.1113/JP284532. Epub 2023 May 22. PMID: 37184335.