Dear Editor-in-Chief

According to the investigation, Lipokines are a kind of bioactive compounds, derived from adipose tissue deposition, which manages multiple molecular signaling pathways. In recent years, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an Oxylipin, has become increasingly important in the scientific literature. An increase of 12,13-diHOME in circulation was associated with an improvement in metabolic health, and the action of this molecule seems to be mediated by brown adipose tissue (BAT)(1). In fact, Oxylipins are oxidized metabolites of long-chain polyunsaturated fatty acids (PUFAs). PUFAs may be received immediately from the weight loss program or from the metabolism of linoleic acid and α-linolenic acid(2). Research indicates that Oxylipins are present in every tissue, urine and blood(3). Linoleic acid may be metabolized through cytochrome P450 (CYP) in order to produce 12,13-diHOME(4). Circulating concentrations of BATokine 12,13-dihydroxy-9Z-octadecenoic (12,13-diHOME) in rodents and humans have been shown to be elevated following exposure to cold and exercise. In other words, in mice, administration of 12,13-diHOME increased fatty acid absorption by brown/beige adipocytes and skeletal muscle after a session of moderate-intensity training, and in rodents using the same training protocol. Furthermore, investigation suggests that circulating 12,13-diHOME is associated with an increase in mitochondrial respiration capacity in the skeletal muscle. This information improves the opportunity that will increase in circulating 12,13-diHOME with exercising capabilities to assist expand the respiratory capacity of a training skeletal muscle and might increase exercise potential(5,6). Whereas the current examination has centered on the distinguishing proof of 12,13-diHOME as the primary BAT-derived molecule controlled by exercise, but be that as it may, the impact of 12,13-diHOME administration to human is as of now obscure.

All things considered, it seems in destiny research it’ll be crucial to study the physiological results of the signaling lipids which are substantially reduced via types of exercise program and diet, as those elements might also additionally play important roles in regulating the metabolic results of the exercise.

*Corresponding author: Ehsan Arabzadeh
Address: Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Email: eh.arabzadeh@gmail.com Tell: 00982182482395
E A: 0000-0003-2907-9798

Research Article
Circulating concentrations of the BATokine 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in different types of exercise training

Mehdi Zargani 1, Ehsan Arabzadeh2*, Fariba Aghaei3, Yosef Ebrahimpour4
1. Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
2. Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
3. Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
4. Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Abstract

Dear Editor-in-Chief

According to the investigation, Lipokines are a kind of bioactive compounds, derived from adipose tissue deposition, which manages multiple molecular signaling pathways. In recent years, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an Oxylipin, has become increasingly important in the scientific literature. An increase of 12,13-diHOME in circulation was associated with an improvement in metabolic health, and the action of this molecule seems to be mediated by brown adipose tissue (BAT)(1). In fact, Oxylipins are oxidized metabolites of long-chain polyunsaturated fatty acids (PUFAs). PUFAs may be received immediately from the weight loss program or from the metabolism of linoleic acid and α-linolenic acid(2). Research indicates that Oxylipins are present in every tissue, urine and blood(3). Linoleic acid may be metabolized through cytochrome P450 (CYP) in order to produce 12,13-diHOME(4). Circulating concentrations of BATokine 12,13-dihydroxy-9Z-octadecenoic (12,13-diHOME) in rodents and humans have been shown to be elevated following exposure to cold and exercise. In other words, in mice, administration of 12,13-diHOME increased fatty acid absorption by brown/beige adipocytes and skeletal muscle after a session of moderate-intensity training, and in rodents using the same training protocol. Furthermore, investigation suggests that circulating 12,13-diHOME is associated with an increase in mitochondrial respiration capacity in the skeletal muscle. This information improves the opportunity that will increase in circulating 12,13-diHOME with exercising capabilities to assist expand the respiratory capacity of a training skeletal muscle and might increase exercise potential(5,6). Whereas the current examination has centered on the distinguishing proof of 12,13-diHOME as the primary BAT-derived molecule controlled by exercise, but be that as it may, the impact of 12,13-diHOME administration to human is as of now obscure.

All things considered, it seems in destiny research it’ll be crucial to study the physiological results of the signaling lipids which are substantially reduced via types of exercise program and diet, as those elements might also additionally play important roles in regulating the metabolic results of the exercise.

*Corresponding author: Ehsan Arabzadeh
Address: Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Email: eh.arabzadeh@gmail.com Tell: 00982182482395
E A: 0000-0003-2907-9798
References

